21 research outputs found

    Observing Brane Inflation

    Full text link
    Linking the slow-roll scenario and the Dirac-Born-Infeld scenario of ultra-relativistic roll (where, thanks to the warp factor, the inflaton moves slowly even with an ultra-relativistic Lorentz factor), we find that the KKLMMT D3/anti-D3 brane inflation is robust, that is, enough e-folds of inflation is quite generic in the parameter space of the model. We show that the intermediate regime of relativistic roll can be quite interesting observationally. Introducing appropriate inflationary parameters, we explore the parameter space and give the constraints and predictions for the cosmological observables in this scenario. Among other properties, this scenario allows the saturation of the present observational bound of either the tensor/scalar ratio r (in the intermediate regime) or the non-Gaussianity f_NL (in the ultra-relativistic regime), but not both.Comment: 31 pages, 12 figures; typo correcte

    A Note on Noncommutative Brane Inflation

    Get PDF
    In this paper, we investigate the noncommutative KKLMMT D3/anti-D3 brane inflation scenario in detail. Incorporation of the brane inflation scenario and the noncommutative inflation scenario can nicely explain the large negative running of the spectral index as indicated by WMAP three-year data and can significantly release the fine-tuning for the parameter β\beta. Using the WMAP three year results (blue-tilted spectral index with large negative running), we explore the parameter space and give the constraints and predictions for the inflationary parameters and cosmological observables in this scenario. We show that this scenario predicts a quite large tensor/scalar ratio and what is more, a too large cosmic string tension (assuming that the string coupling gsg_s is in its likely range from 0.1 to 1) to be compatible with the present observational bound. A more detailed analysis reveals that this model has some inconsistencies according to the fit to WMAP three year results.Comment: 20 pages, 5 figures; accepted for publication in JCA

    Observational constraints on cosmic strings: Bayesian analysis in a three dimensional parameter space

    Full text link
    Current data exclude cosmic strings as the primary source of primordial density fluctuations. However, in a wide class of inflationary models, strings can form at later stages of inflation and have potentially detectable observational signatures. We study the constraints from WMAP and SDSS data on the fraction of primordial fluctuations sourced by local cosmic strings. The Bayesian analysis presented in this brief report is restricted to the minimal number of parameters. Yet it is useful for two reasons. It confirms the results of Pogosian et al (2003) using an alternative statistical method. Secondly, it justifies the more costly multi-parameter analysis. Already, varying only three parameters -- the spectral index and the amplitudes of the adiabatic and string contributions -- we find that the upper bound on the cosmic string contribution is of order 10%. We expect that the full multi-parameter study, currently underway, will likely loosen this bound.Comment: v3: 4 pages, 5 figures, slight modifications to match published versio

    An Inflaton Mass Problem in String Inflation from Threshold Corrections to Volume Stabilization

    Full text link
    Inflationary models whose vacuum energy arises from a D-term are believed not to suffer from the supergravity eta problem of F-term inflation. That is, D-term models have the desirable property that the inflaton mass can naturally remain much smaller than the Hubble scale. We observe that this advantage is lost in models based on string compactifications whose volume is stabilized by a nonperturbative superpotential: the F-term energy associated with volume stabilization causes the eta problem to reappear. Moreover, any shift symmetries introduced to protect the inflaton mass will typically be lifted by threshold corrections to the volume-stabilizing superpotential. Using threshold corrections computed by Berg, Haack, and Kors, we illustrate this point in the example of the D3-D7 inflationary model, and conclude that inflation is possible, but only for fine-tuned values of the stabilized moduli. More generally, we conclude that inflationary models in stable string compactifications, even D-term models with shift symmetries, will require a certain amount of fine-tuning to avoid this new contribution to the eta problem.Comment: 25 page

    Brane Inflation and Cosmic String Tension in Superstring Theory

    Full text link
    In a simple reanalysis of the KKLMMT scenario, we argue that the slow roll condition in the D3-anti-D3-brane inflationary scenario in superstring theory requires no more than a moderate tuning. The cosmic string tension is very sensitive to the conformal coupling: with less fine-tuning, the cosmic string tension (as well as the ratio of tensor to scalar perturbation mode) increases rapidly and can easily saturate the present observational bound. In a multi-throat brane inflationary scenario, this feature substantially improves the chance of detecting and measuring the properties of the cosmic strings as a window to the superstring theory and our pre-inflationary universe.Comment: Combined bounds from WMAP and SDSS Lyman alpha experiments are added for analysis, changes are added to the tabl

    Comparing Brane Inflation to WMAP

    Full text link
    We compare the simplest realistic brane inflationary model to recent cosmological data, including WMAP 3-year cosmic microwave background (CMB) results, Sloan Digital Sky Survey luminous red galaxies (SDSS LRG) power spectrum data and Supernovae Legacy Survey (SNLS) Type 1a supernovae distance measures. Here, the inflaton is simply the position of a D3D3-brane which is moving towards a Dˉ3\bar{D}3-brane sitting at the bottom of a throat (a warped, deformed conifold) in the flux compactified bulk in Type IIB string theory. The analysis includes both the usual slow-roll scenario and the Dirac-Born-Infeld scenario of slow but relativistic rolling. Requiring that the throat is inside the bulk greatly restricts the allowed parameter space. We discuss possible scenarios in which large tensor mode and/or non-Gaussianity may emerge. Here, the properties of a large tensor mode deviate from that in the usual slow-roll scenario, providing a possible stringy signature. Overall, within the brane inflationary scenario, the cosmological data is providing information about the properties of the compactification of the extra dimensions.Comment: 45 pages 11 figure

    Duality Cascade in Brane Inflation

    Full text link
    We show that brane inflation is very sensitive to tiny sharp features in extra dimensions, including those in the potential and in the warp factor. This can show up as observational signatures in the power spectrum and/or non-Gaussianities of the cosmic microwave background radiation (CMBR). One general example of such sharp features is a succession of small steps in a warped throat, caused by Seiberg duality cascade using gauge/gravity duality. We study the cosmological observational consequences of these steps in brane inflation. Since the steps come in a series, the prediction of other steps and their properties can be tested by future data and analysis. It is also possible that the steps are too close to be resolved in the power spectrum, in which case they may show up only in the non-Gaussianity of the CMB temperature fluctuations and/or EE polarization. We study two cases. In the slow-roll scenario where steps appear in the inflaton potential, the sensitivity of brane inflation to the height and width of the steps is increased by several orders of magnitude comparing to that in previously studied large field models. In the IR DBI scenario where steps appear in the warp factor, we find that the glitches in the power spectrum caused by these sharp features are generally small or even unobservable, but associated distinctive non-Gaussianity can be large. Together with its large negative running of the power spectrum index, this scenario clearly illustrates how rich and different a brane inflationary scenario can be when compared to generic slow-roll inflation. Such distinctive stringy features may provide a powerful probe of superstring theory.Comment: Corrections in Eq.(5.47), Eq (5.48), Eq(5.49) and Fig

    Towards an Explicit Model of D-brane Inflation

    Full text link
    We present a detailed analysis of an explicit model of warped D-brane inflation, incorporating the effects of moduli stabilization. We consider the potential for D3-brane motion in a warped conifold background that includes fluxes and holomorphically-embedded D7-branes involved in moduli stabilization. Although the D7-branes significantly modify the inflaton potential, they do not correct the quadratic term in the potential, and hence do not cause a uniform change in the slow-roll parameter eta. Nevertheless, we present a simple example based on the Kuperstein embedding of D7-branes, z_1=constant, in which the potential can be fine-tuned to be sufficiently flat for inflation. To derive this result, it is essential to incorporate the fact that the compactification volume changes slightly as the D3-brane moves. We stress that the compactification geometry dictates certain relationships among the parameters in the inflaton Lagrangian, and these microscopic constraints impose severe restrictions on the space of possible models. We note that the shape of the final inflaton potential differs from projections given in earlier studies: in configurations where inflation occurs, it does so near an inflection point. Finally, we comment on the difficulty of making precise cosmological predictions in this scenario. This is the companion paper to arXiv:0705.3837.Comment: 68 pages, 6 figures; v2: fixed typos, added refs and clarifications; v3: expanded discussion of inflection point inflatio
    corecore